Pages

Saturday, 20 April 2013

10 INNOVATIONS IN WATER PURIFICATION


New Picture 26
10 Innovations in Water Purification
By Patrick J. Kiger,
How Stuff Works, 18 April 2013.

Food and shelter are crucial for living, but nobody can survive for very long without water. That's why, since the beginning of history, civilizations have lived near abundant sources of H20.

But it's not enough just to have plenty of it. The same water that gives life can also make people sick or even kill them, if it contains dangerous substances or disease-causing microbes. And since people use water for activities such as irrigating crops, washing and waste disposal, sources of water close to a human population can easily become contaminated [source: Hassan].

New Picture 27
University of Virginia engineer Jim Smith and Dr. Rebecca Dillingham, co-directors of PureMadi, are
shown with one of the ceramic water filters their company makes and distributes in South Africa for
communities with little access to clean water. Credit: University of Virginia.

As a result, humans have been trying to purify water for thousands of years. As far back as 1500 B.C., Egyptians used the chemical alum to filter suspended sediment out of their drinking water. But it wasn't until the late 1800s and early 1900s that scientists figured out that microbes caused illnesses and that water could be treated with chlorine or ozone to eliminate them [source: Environmental Protection Agency].

While the water that comes out of taps in most countries now is clean and safe, about 11 percent of the world's population - 783 million people - still doesn't have access to potable water, according to a 2012 United Nations study. So scientists are developing new methods of obtaining water and purifying it. Here are 10 of the most promising technologies.

10. Direct-Contact Membrane Desalination

New Picture 28
A desalination plant in Oman. The process of desalination is expensive but the new process of DCMD
promises to make it cheaper and more efficient.

If we could tap the vast oceans as a source of drinking water, everyone would have more than enough. But that means removing the salt, which is inefficient and costly using existing technology. That's why a new process, developed by New Jersey Institute of Technology chemical engineering professor Kamalesh Sirkar, has such dazzling promise. In Sirkar's direct-contact membrane distillation (DCMD) system, heated seawater flows across a plastic membrane containing a series of hollow tubes filled with cold distilled water. The DCMD's tubes have tiny pores, which are designed so that they can be penetrated by the water vapour which collects on them, but not by salt. The vapour diffuses through the pores and is drawn off, to be condensed again into liquid water.

According to Sirkar, his system is extremely efficient - it can produce 80 litres (21 gallons) of drinking water per 100 litres (26 gallons) of seawater, about twice what existing desalination technology can produce. One potential downside of DCMD is that it requires a steady, inexpensive source of heat in order to prevent the water temperature on either side of the membrane from equalizing. But there's the possibility that DCMD systems could someday recycle waste heat from shore-based factories and offshore oil drilling operations, making it a win-win for everybody [source: Greenmeier].

9. Ceramic Water Filters

New Picture 29
This Doulton stoneware water filter, ca. 1880, was created in response to public awareness of
contaminated drinking water in Britain. Today, the Royal Doulton company is better known
for its fine china but still produces ceramic and carbon filters. Credit: Doulton USA.

Clay ceramic filters work in a fashion similar to the desalination technology described in the previous section. Basically, water flows through clay that contains a lot of really tiny holes, which are big enough to let water molecules though, but too small for bacteria, dirt, and other bad stuff [source: Doulton USA]. The first such device was developed by a British potter, Henry Doulton, back in the early 1800s for purifying water drawn from the Thames, which was so contaminated with raw sewage that cholera and typhoid were continual dangers [source: Brodrick].

Since Doulton, other inventors have made improvements to his basic concept, such as adding silver coatings to kill bacteria, so that today's ceramic filters do an even better job of getting rid of dangerous pathogens. The really revolutionary development, though, is that humanitarian non-governmental organizations have set up factories to make and give away large numbers of inexpensive ceramic filters in the developing world.

A 2006 study found that Cambodians who used the simple filters, which are portable and require no energy to run, reduced the incidence of diarrheal disease by 46 percent, and E.coli contamination in their water by 95 percent from 2003 rates [source: Resource Development International – Cambodia]

One drawback with these ceramic filters is the speed of filtration. The water seeps out the clay filter at a rate of just 2 litres (2.11 quarts) per hour. But the process needs to be slow in to give the silver solution time to kill pathogens. The filter also does not remove harmful chemicals like arsenic.

8. Herbal Defluoridation

New Picture 30
The tridax procumbens is a member of the daisy family and a widespread weed. It is also know as
the tridax daisy or coat buttons and looks a lot like this plant.

In the U.S., water companies add a small amount of fluoride - between 0.8 and 1.2 milligrams per litre - to drinking water as a way to protect teeth from decay. But in some parts of the world, including India, the Middle East and some African countries, water already has a lot of naturally-occurring fluoride, and the levels can be so high that they're dangerous to health. In one Indian village, for example, a naturally occurring level of 5 to 23 milligrams (.00017 to .008 ounces) per litre has caused residents to suffer severe anaemia, stiff joints, kidney failure and stained teeth [source: World Health Organization].

Fortunately, Indian researchers offered a possible solution in a March 2013 International Journal of Environmental Engineering article. The researchers have developed a filter system that uses a common medicinal herb, Tridax procumbens, to absorb excess fluoride from drinking water. The plant, which has also been used to extract toxic heavy metals from water, attracts fluoride ions when water passes through it at a temperature of about 27 degrees Celsius (80.6 degrees Fahrenheit). The filter potentially could provide an inexpensive, easy-to-use way of making water safe in places where the supply contains excessive fluoride. But it also may be used by people in the U.S. and other countries who don't like the idea of fluoride being added to their water [source: Science Daily].

7. 'Super Sand'

New Picture 31
Warehouses on the River Elbe in Hamburg, Germany around the time residents suffered a cholera
epidemic that killed 7,500.

Sand and gravel have been used to purify water for thousands of years, and in 1804, a Scotsman named John Gibb designed and built the first filter that strained water through grains of sand to remove bigger particles of contamination. His technology worked so well that pretty soon, London and other big cities in Europe were using it to make river water look clearer and taste better.

By the late 1800s, scientists figured out that filtering made water safer to drink as well, since the particles stopped by the filtering were the ones that helped to transmit the microbes that caused water-borne diseases. The value of filtering was demonstrated in 1892, when the city of Hamburg, which got its drinking water from the River Elbe, suffered a cholera epidemic that killed 7,500 people, while the neighbouring city of Altona, where water from the same river was filtered, escaped almost untouched [source: Huisman and Wood].

But recently, researchers have figured out how to coat sand grains with graphite oxide to create "super sand" that reportedly can filter harmful substances such as mercury from water five times as effectively as ordinary sand. Work continues to find ways to make super sand absorb even more contamination, and eventually use it in developing countries where water supplies are dangerously polluted [source: Science Daily].

6. Removing Arsenic With Plastic Bottles

New Picture 32
A chemistry professor has devised a system to remove arsenic from drinking water using chopped
up beverage bottles like these.

If you've seen the 1940s cinematic black comedy "Arsenic and Old Lace," in which a couple of well-meaning spinsters take it upon themselves to put lonely old men out of their misery by giving them elderberry wine laced with arsenic, you know that the latter substance is pretty bad stuff. When it contaminates drinking water, arsenic can cause bladder, lung and skin cancer, as well as harm the nervous system, heart and blood vessels [source: National Resources Defense Council].

Unfortunately, almost 100 million people in developing countries today are exposed to dangerously high levels of arsenic in their water, and they can't afford the complex, expensive purification methods used in the U.S. to get rid of it. However, a new technology may offer a solution. Monmouth University (New Jersey, USA) chemistry professor Tsanangurayi Tongesayi has developed an inexpensive arsenic-removing system in which chopped-up pieces of ordinary plastic beverage bottles are coated with cysteine, an amino acid. When the plastic pieces are added to water, the cysteine binds to the arsenic, removing it and rendering the water drinkable. In tests, he's been able to take water containing dangerous arsenic levels of 20 parts per billion, and reduce it to 0.2 parts per billion, which meets the U.S. Environmental Protection Agency's standard [source: Science Daily]

5. Salt for Purification

New Picture 33
Residents wash their clothes and fetch potable water at a public pump in Gabon. Many people in Africa
suffer from diarrhoea caused by drinking contaminated water but sun and salt have been found to be
good disinfectants for it.

In impoverished countries where people can't afford to build expensive water treatment plants, they sometimes rely upon a free resource - sunlight. A combination of heat and ultraviolet radiation from the sun will wipe out most of the microbes that cause diarrhoea, an ailment that claims the lives of 4,000 children in Africa every day. One complication: In order for the process to work, the water has to be clear, which is a problem in rural areas where people get their water from rivers, streams and boreholes that yield water filled with suspended clay particles.

But Joshua Pearce, an associate professor of materials science and engineering at Michigan Technological University, and colleague Brittney Dawney from Queens University in Ontario have a solution. In a 2012 article in the Journal of Water, Sanitation and Hygiene for Development, they proposed a solar disinfection regimen that first treats the water with a process called flocculation, in which a small amount of table salt is added to the water to draw out the clay. While the resulting drinking water has higher levels of salt than Americans are used to, it's still got less in it than Gatorade. "I've drunk this water myself," Pearce said in an interview. "If I were somewhere with no clean water and I had kids with diarrhoea, and this could save their lives, I'd use it, no question" [sources: Science Daily, Dawney and Pearce].

4. The SteriPEN

New Picture 34
The SteriPEN water purifier kit. Credit: SteriPEN.

For travellers in developing countries, exposure to unsafe water can be a big risk. Wouldn't it be great if you could just dip a magic wand into water and purify it? Now, essentially, you can. A handheld device called the SteriPEN, marketed by Maine-based company called Hydro Photon, uses ultraviolet light to eradicate disease-causing microorganisms. The device employs the same purification technology used by bottled-water plants, but it's been miniaturized, so that it weighs just 6.5 ounces (184 grams) and fits into a backpack. Stick it into a litre of stream or pond water for 90 seconds, and voila - it's safe to drink [source: Stone]. Such portable water purification systems can destroy bacteria, viruses and protozoa, such as giardia and cryptosporidium, which can cause sickness [source: New York Times].

The big market for SteriPENS is backpackers and travellers, but they're also used by the U.S. military. SteriPEN also has donated some of the devices to game wardens who have to work in remote wilderness areas where they don't have access to tap water [source: Stone]. One caveat with ultraviolet purification: Water that's cloudy must be pre-filtered first in order to remove particles that are in suspension [source: Centres for Disease Control and Prevention].

3. MadiDrop Ceramic Water Purification Disks

New Picture 35
The MadiDrop tablet is designed to be immersed in water, killing 99.9 percent of all pathogens. It is
easier to transport and cheaper than the flowerpot filters but does not remove sediment. Credit:

Filters are a convenient, inexpensive way to purify water in developing countries. But a University of Virginia-based non-profit humanitarian organization called PureMadi - "Madi" is the Tshivenda South African word for "water" - has come up with an additional easy-to-use technology that can purify a container of water simply by being immersed in it [source: Samarrai]. The MadiDrop is a small ceramic disk, about the size of a hamburger patty, which contains microbe-killing silver or copper nanoparticles. Nanoparticles are basically really, really tiny objects specially designed by scientists to behave as a single unit [sources: Samarrai, Mandal].

The MadiDrop is cheaper, easier to use, and easier to transport than the larger ceramic flowerpot filters (pictured on the first page) that PureMadi already is making in an African factory, according to James Smith, a civil and environmental engineer who is one of the project's leaders. The one downside, again, is that the MadiDrop doesn't remove suspended particles that make water cloudy. So ideally, users will put water through a two-step purification process, by first using the flowerpot filter to get rid of sediment and then eradicating the microbes with MediDrop [source: Samarrai].

2. Toxin-Eating Bacteria

New Picture 36
Aerial view of flamingos over Lake Bogoria, Kenya. This saline, alkaline lake is abundant with
cynobacteria that attracts large numbers of flamingos, sometimes 1 million at a time.

Many of us probably think of algae as that gross stuff that we have to clean out of our fish tanks every now and then, but they can be a serious threat to health as well. Blooms of blue-green algae, called cyanobacteria, are found in both fresh and salt water throughout the world. They produce toxins called microcystins which are easily ingested by people who drink, swim or bathe in water that's contaminated with them. Once microcystins get into your body, they can attack your liver cells. That's obviously not something that you want to happen.

Unfortunately, conventional water treatment methods, such as sand filtration and chlorination, don't get rid of these tiny menaces. That's why a new purification method developed by researchers at Scotland's Robert Gordon University has so much promise. The researchers have identified more than 10 different strains of bacteria that like to have microcystins for lunch, and are capable of metabolizing them so that they break down into harmless, non-toxic materials. If the algae-killer bacteria are introduced into water sources, they should be able to get rid of the microcystins and make the water safe to drink without using any potentially harmful chemicals [source: Science Daily].

1. Nanotechnology

New Picture 37
A 3D picture of a carbon nanotube. Filters fashioned from this could remove sediment, bacteria and
even trace toxic elements from water with a faster flow rate than conventional filters.

We've already mentioned an innovative new device, the MadiDrop, which utilizes silver or copper nanoparticles to kill bacteria. But nanotechnology - that is, the engineering of really, really small objects and structures, smaller than the width of a human hair - has a lot more potential to help clean up the world's drinking water. Researchers at India's D.J. Sanghvi College of Engineering say that filters fashioned from carbon nanotubes and alumina fibres, for example, could be capable of removing not just sediment and bacteria, but even traces of toxic elements such as arsenic.

One advantage of using nanofilters, as they're called, is that they're more efficient than conventional water filtration systems, and don't require as much water pressure. But even though their pores are a lot smaller than conventional filters, they have a similar or faster flow rate [source: Science Daily].

At Massachusetts Institute of Technology, researchers are even looking at using nanotechnology for desalination. They're experimenting with using sheets of graphene, a form of carbon that's just a single-atom thick, to filter seawater. With nanotechnology, it's possible to create sheets filled with miniscule holes, just a billionth of a meter thick, which can block particles of salt but allow water molecules to pass through [source: Chandler].

Author's Note: I grew up what used to be known as the Steel Valley in western Pennsylvania, where the river that we depended upon for drinking water was polluted with everything from heavy metals and acids from strip mines to raw sewage. Yet somehow, when it came out of our taps, the water looked crystal clear and tasted OK. I always was puzzled about that, and wondered what elaborate technology was required to render it potable. Researching this article was interesting to me, because I got to learn about both the history of water purification, and what recent innovations may ensure that people across the planet have access to clean water.

Related Articles:
1. Water

Article Sources:
1. Bowling, Brian. "Water From Mon River Loaded With Particles." Valley Independent. Oct. 24, 2008. (March 31, 2013)
2. Brodrick, Sean. "The Ultimate Suburban Survivalist Guide: The Smartest Money Moves to Prepare for Any Crisis." John Wiley and Sons. 2010. (March 31, 2013)
3. Centres for Disease Control and Prevention. "Drinking Water Treatment Methods for Backcountry and Travel Use." CDC. Feb. 20, 2009. (March 31, 2013)
4. Chandler, David L. "A New Approach to Water Desalination." MIT News. July 2, 2012. (March 31, 2013)
5. Dawney, Brittney and Pearce, Joshua M. "Optimizing the Solar Water Disinfection (SODIS) Method by Decreasing Turbidity With NaCl." Journal of Water, Sanitation and Hygiene for Development. 2012. (April 3, 2013)
6. DoultonUSA. "How the Doulton System Works." DoultonUSA. Undated. (March 31, 2013)
7. Environmental Protection Agency. "The History of Drinking Water Treatment." EPA. February 2000. (March 31, 2013)
8. Greenemeier, Larry. "A Fine Brine: New Desalination Technique Yields More Drinkable Water." Scientific American. May 21, 2012. (March 31, 2013)
9. Hassan, Fekri A. "Water Management and Early Civilizations: From Cooperation to Conflict." Unesco. (March 31, 2013)
10. Huisman, L. and Wood, W.E. "Slow Sand Filtration." World Health Organization. 1974. (April 1, 2013)
11. Lederer, Edith M. "Clean Water: World's Nations Meet U.N. Target for Safe Drinking Water Ahead Of Schedule." Huffington Post. March 6, 2012. (March 31, 2013)
12. Mandal, Dr. Ananya. "Nanoparticles -- What Are Nanoparticles?" News-medical Net. April 1, 2013. (April 1, 2013)
13. Natural Resources Defense Council. "Arsenic in Drinking Water." Feb. 12, 2009. (April 1, 2013)
14. New York Times. "Cholera." (April 1, 2013)
15. Plappally, Anand, et al. "A Field Study on the Use of Clay Ceramic Filters and Influences on the General Health of Nigeria." Health Behaviour and Public Health. May 19, 2011. (March 31, 2013)
16. Resource Development International - Cambodia. "Ceramic Water Filter Handbook." February 2009. (March 31, 2013)
17. Samarrai, Fariss. "U.Va. Non-profit Organization, PureMadi, Develops Innovative Water Purification Tablet for Developing World." UVA Today. Feb. 5, 2013. (April 1, 2013)
18. Solomon, Steven. "Water: The Epic Struggle for Wealth, Power and Civilization." Harper Collins. 2010. (March 31, 2013)
19. ScienceDaily. "Herbal Defluoridation of Drinking Water.". March 5, 2013. (March 31, 2013)
20. ScienceDaily. "Innovative Water Purification Tablet for Developing World." Feb.3, 2013 (March 31, 2013)
21. ScienceDaily. "Nanotechnology for Water Purification." July 28, 2010. (March 31, 2013)
22. ScienceDaily. "Novel Bacterial Strains Clear Algal Toxins From Drinking Water." Sept. 10, 2009. (March 31, 2013)
23. ScienceDaily. "'Plastic Bottle' Solution for Arsenic-Contaminated Water Threatening 100 Million People." Sept. 1, 2011. (March 31, 2013)
24. ScienceDaily. "Simple Way to Remove Mud from Drinking Water." May 1, 2012. (March 31, 2013)
25. ScienceDaily. "'Super Sand' for Better Purification of Drinking Water." June 23, 2011. (March 31, 2013)
26. SteriPEn. "Technology." (March 31, 2013)
27. Stone, Matthew. "Travel Light, Drink Safe Water." Morning Sentinel. March 28, 2010. (April 1, 2013)
28. Westmoreland County Municipal Authority. "Source Water Assessment Public Summary." Pennsylvania Department of Environmental Protection. May 2002. March 31, 2013)
29. World Health Organization. "Fluoride." (April 1, 2013)

[Post Source: How Stuff Works. Edited.]



17 comments:

  1. Its really great review to know about this information..Thanks a lot for sharing your post.

    ReplyDelete
  2. Ceramic water filters? This sounds great and environment-friendly. But does this function like a whole house water filter?

    ReplyDelete
  3. I didnt know some of the water purification methods featured here. Good thing i have stumbled upon this post, now i have a better understanding and an added information regarding the different water purification methods that can be used.

    - CannonWater.com

    ReplyDelete
  4. Hi, I appreciate your post. Water purification is no longer just for water sources that look questionable; you should use some type of purification before drinking from any water source in the wilds. In this section I will discuss the different methods for purifying your water, and the various diseases you can prevent by doing so. For complete coverage on this subject, I highly recommend the hilarious, but very informative and readable book (you may want to sit down for this—pun intended!)thanks~ Natalie

    ReplyDelete
  5. Therefore glad I found your website searching for shoes.
    This is great information at any given time when the internet is full
    of falsehoods. Keep up the task in "Link to another good article from Allen Wright" and that i can
    come back often. . I know something about this same information, to know you can click here

    water cooler
    water delivery

    ReplyDelete
  6. If you want to get a great deal from this post then you have to apply such strategies to your
    won website.

    Here is my blog post - quick payday loans cash

    ReplyDelete
  7. It's perfect time to make some plans for the future and it's time to be
    happy. I have read this post and if I could I wish to suggest you some interesting things
    or tips. Perhaps you can write next articles referring to this article.
    I want to read more things about it!

    Feel free to visit my site: fast payday loans -
    merit-solutions.co.uk,

    ReplyDelete
  8. best water purifier i've tried and i'm sticking to is berkey water filter. Instantly purifies water from any source including stagnant water.

    ReplyDelete
  9. R.O water system is great as it removes toxins and contaminants such as arsenic, nitrates, sodium, copper and lead, some organic chemicals, and the municipal additive fluoride. invest on a good home water purification system. it will benefit your family's health and safety.

    ReplyDelete
    Replies
    1. thanks for sharing your knowledge. Nowadays, lot of people are suffering from different diseases acquired from drinking unfiltered water. We really need a good water purification system that could give us safe water to drink

      Delete
  10. I liked the content on this site. Would like to visit again.

    Ozone Color Removal & hospital ozone disinfection

    ReplyDelete
  11. Water is essential for health, hygiene and the productivity of our community. water treatment process may vary on the water condition that you have in your area. its better to invest on a good water treatment. it will benefit you by providing safety to you and your family.

    ReplyDelete
  12. Installing water filters is not too difficult and you can do it yourself if you are confident about
    your skills. If you enjoy drinking loads of water, then always remember that you will have to
    change your filter very often. Many people do not know this, but the price of the refrigerators
    from various companies varies because of the quality of filter that has been installed along with
    the life span of the filter. A number of the refrigerator filters have the capacity to be connected to
    your desired device through a 1/4 inch tube made from copper or plastic. The filter will create a
    high pressure with the connection tube in order to offer a steady flow of filtered and cool water.

    ReplyDelete
  13. Wow, I had no idea arsenic was such a problem still, I thought we had all but removed it from mos water sources. But it's good to know people are still making advancements in that field and making it easier. Not to mention using recycled materials to do it; and one we produce billions of each year. http://thesurvivalchest.com/the-best-way-to-purify-water-survival-water-purification/

    ReplyDelete
  14. Dynamite! This post is so informative. Even haven't heard about most of the things here. Well, I just know about Berkey and other common brand water filtration systems. Lol But it's great to know about all these stuff. Well-written! Thanks for this!

    ReplyDelete
  15. Regards
    @admin
    While the water that comes out of taps in most countries now is clean and safe I want s to Know how purified water please tell me some type of RO SERVICE PROVIDER Company Name.

    ReplyDelete

Please adhere to proper blog etiquette when posting your comments. This blog owner will exercise his absolution discretion in allowing or rejecting any comments that are deemed seditious, defamatory, libelous, racist, vulgar, insulting, and other remarks that exhibit similar characteristics. If you insist on using anonymous comments, please write your name or other IDs at the end of your message.